Exact scaling transform for a unitary quantum gas in a time dependent harmonic potential

نویسنده

  • Yvan Castin
چکیده

A unitary quantum gas is a gas of quantum particles with a binary interaction of infinite scattering length and negligible range. It has been produced in recent experiments with gases of fermionic atoms by means of a Feshbach resonance. Using the Fermi pseudo-potential model for the atomic interaction, we show that the time evolution of such a gas in an isotropic three-dimensional time dependent harmonic trap is exactly given by a gauge and scaling transform. Résumé Nous entendons par “gaz quantique unitaire” une assemblée de particules dont le mouvement est décrit quantiquement et qui interagissent par un potentiel de longueur de diffusion infinie et de portée négligeable devant leur distance moyenne et leur longueur d’onde thermique. Un tel gaz a été produit récemment à l’aide d’une résonance de Feshbach dans un gaz d’atomes fermioniques. En modélisant les interactions entre particules par le pseudopotentiel de Fermi, nous montrons que l’évolution d’un gaz unitaire dans un potentiel de piégeage harmonique isotrope tridimensionnel de dépendence temporelle quelconque est décrite exactement par la composition d’un changement d’échelle et d’une transformation de jauge.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exact scaling transform for a unitary quantum gas in a time dependent harmonic potential Évolution d’un gaz quantique unitaire dans un potentiel harmonique variable : solution par changement d’échelle

A unitary quantum gas is a gas of quantum particles with a binary interaction of infinite scattering length and negligible range. It has been produced in recent experiments with gases of fermionic atoms by means of a Feshbach resonance. Using the Fermi pseudo-potential model for the atomic interaction, we show that the time evolution of such a gas in an isotropic three-dimensional time dependen...

متن کامل

Evolution of quantum systems with a scaling type of time-dependent Hamiltonians

We introduce a new class of quantum models with time-dependent Hamiltonians of a special scaling form. By using a couple of time-dependent unitary transformations, the time evolution of these models is expressed in terms of related systems with time-independent Hamiltonians. The mapping of dynamics can be performed in any dimension, for an arbitrary number of interacting particles and for any t...

متن کامل

Unitary transformation for the system of a particle in a linear potential

– A unitary operator which relates the system of a particle in a linear potential with time-dependent parameters to that of a free particle, has been given. This operator, closely related to the one which is responsible for the existence of coherent states for a harmonic oscillator, is used to find a general wave packet described by an Airy function. The kernel (propagator) and a complete set o...

متن کامل

Observation of the Efimovian expansion in scale-invariant Fermi gases.

Scale invariance plays an important role in unitary Fermi gases. Discrete scaling symmetry manifests itself in quantum few-body systems such as the Efimov effect. Here, we report on the theoretical prediction and experimental observation of a distinct type of expansion dynamics for scale-invariant quantum gases. When the frequency of the harmonic trap holding the gas decreases continuously as t...

متن کامل

Time-dependent analysis of carrier density and potential energy in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD)

Interaction and correlation effects in quantum dots play a fundamental role in defining both their equilibrium and transport properties. Numerical methods are commonly employed to study such systems. In this paper we investigate the numerical calculation of quantum transport of electrons in spherical centered defect InGaAs/AlGaAs quantum dot (SCDQD). The simulation is based on the imaginary time...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017